Дальнейшее упорядочение
а п ао ы о п а р ц щ м т ц
р
к г к цк г а а к ц щ щ з з
ы т к ц к г м ц ы в а
ы
|
На первой итерации алгоритма мы выиграли. Теперь мы фактически имеем два хаоса, соответствующих начальным условиям: стол и пространство «комната минус стол». Для каждого из них можем рассмотреть полезность хаоса и полезность порядка, и снова провести базовую итерацию упорядочения, если потребуется. Так на столе может появиться папка для платежек, а в остальном пространстве комнаты – угол для сапог.
Мы получили несколько хаосов, удовлетворяющих начальным условиям: один первого уровня (комната минус стол минус угол), два второго уровня (стол минус папка, угол) и один третьего уровня (папка). По отношению к любому из них можно проводить базовую итерацию упорядочения – до тех пор, пока дальнейшее упорядочение не перестанет обещать роста полезности.
Таким образом, мы «ввинчиваем» в хаос воронку упорядочения ровно в тех местах, и ровно на ту глубину, которая необходима. Получается некий фрактал – последовательность вложенных хаосов, или вложенных ограничений на хаос. Эта фрактальная структура обеспечивает оптимальную предсказуемость и управляемость ситуации с точки зрения максимизации совокупной полезности (в которую предсказуемость и управляемость входят как компоненты). Мы формулируем вывод сразу обобщенно, минуя функцию вероятности отыскания нужного объекта.
О степени строгости этого вывода см. следующий пункт. Здесь обратим внимание на то, что при таком понимании процесса упорядочения стереотипные оценки «порядок – благо, хаос – зло» являются достаточно грубыми. Более правильно говорить о том, что благом является уровень порядка, оптимальный с точки зрения совокупной полезности, а злом – отступления от этого уровня в обе стороны. Отсюда очевидна некорректность выделения любой из диалектических противоположностей типа «охранители – ниспровергатели», «созидатели – разрушители» как однозначно плохой или хорошей.
Оптимальна ли полученная система?
При таком последовательном упорядочении возникает естественный вопрос: аддитивна ли функция полезности? Т.е.: пусть на самом первом шаге мы рассмотрели все возможные полезности от упорядочения, и решили, что максимум прироста полезности даст выделение стола. Затем рассмотрели отдельно стол, решили что в нем уже ничего выделять не стоит; рассмотрели «комнату минус стол» и решили выделить в ней угол. Рассмотрели получившиеся хаосы «угол» и «комната минус угол минус стол» и решили в них ничего не выделять.
А если бы мы пошли другим путем и рассматривали прирост полезности от упорядочения, допуская накладывание на начальный хаос сразу двух ограничений? Т.е. вложенные хаосы появляются не последовательно, а параллельно (из комнаты выделяются угол и стол одновременно)? Могло бы это дать прирост полезности, недостижимый при итерационном способе упорядочения? А если могло бы – то почему не допустить накладывание трех ограничений одновременно, и т.д.? Об этом – следующий раздел.
Узнать еще больше о тайм-менеджменте Вы сможете из книг Глеба Архангельского. Получить БЕСПЛАТНО!